
The Influence of Aerosols on Cirrus Clouds during an Aircraft Campaign 

Introduction & Motivation 

Climate change is disrupting societies and harming the delicate ecosystems on Earth 

(IPCC, 2023). Unfortunately, global-scale action does not seem to be taking place to curb climate 

change, thus it is necessary that we appropriately evaluate all the potential approaches to mitigate 

it (Lawrence et al. 2018). One such approach requires the use of an efficient ice nucleating 

particle (INP) to thin ice clouds, also referred to as cirrus clouds, which are ubiquitous in the 

atmosphere and uniquely have a net warming effect on Earth due to trapping outgoing longwave 

radiation (OLR) (Sassen et al., 2008).  

Cirrus clouds are composed entirely of ice crystals and form at high altitudes where 

temperatures can get colder than 235K. Thus, by ‘thinning’ them with an INP, such as with 

mineral dust, their optical thickness can decrease allowing OLR to exit the atmosphere and 

causing a cooling effect on the climate (Mitchell & Finnegan, 2009; Storelvmo et al., 2014). But 

the success of this approach is reliant on the way that the ice crystals nucleated in the cloud. Ice 

crystals are formed by either homogeneous or heterogeneous nucleation, the former produces ice 

crystals that are both numerous and small while the latter creates fewer ice crystals that are larger 

in size (Storelvmo, 2017). These difference in the ice crystal size distribution controls whether 

the cirrus cloud has a warming or cooling effect on the climate. Adding an INP to a cirrus cloud 

formed heterogeneous nucleation would then increase its optical thickness resulting in a warming 

effect as ice crystals will preferentially form upon the extra INPs rather than growing on the 

already available ice crystals. Therefore, it is imperative that a method is developed in order to 

understand the spatial patterns for the two cirrus cloud nucleation formation mechanisms.   

Data & Methods 

For this project I am using meteorological, cloud, and aerosol measurements from the 

Atmospheric Tomography Mission (ATom), an airborne field campaign with wide spatial 

coverage (Wofsy et al., 2021). The flight tracks, separated by each season, for this campaign can 

be seen in Figure 1. The Cloud Aerosol and Precipitation Spectrometer (CAPS) provides cloud 

indictor data which is a categorical variable that can be a value from 0 to 4 (0 = cloud free, 1 = 

aerosol cloud transition regime (ACTR), 2 = liquid cloud, 3 = cloud in the mixed-phase 

temperature regime, and 4 = cirrus cloud). I plan to use a model to predict this variable with 



aerosol measurements from the Aerosol Microphysical Properties (AMP) instrument suite which 

includes the aerosol sizing instruments: 5-chan CPC (N-MASS), ultra-high sensitivity aerosol 

size spectrometer (UHSAS), and the laser aerosol spectrometer (LAS). These instruments sized 

dry aerosols encountered during the campaign into the fine (0.0027 um - 0.5 um) and coarse (0.5 

um - 4.8 um) size ranges based on the ammonium sulfate optical equivalent diameter.  

To begin, I created a feature matrix composed of the time, season, latitude, longitude, 

altitude, temperature (T), vertical velocity (w), saturation vapor pressure with respect to water, 

saturation vapor pressure with respect to ice, fine dry aerosol number concentration, coarse dry 

aerosol number concentration, fine dry aerosol surface area concentration, coarse dry aerosol 

number concentration, and total aerosol number concentration. I cleaned the data by replacing 

the fill in value of -99999 with nan and then removing all the rows that contain a nan in any one 

of the features. After cleaning the data, I was left with 1211447 samples as seen in Figure 1. 

Next, I also removed any samples that were either cloud free or in the ACTR because I was only 

interested in the in-cloud data (2 to 4), which left me with 18980 samples (Figure 1). The 

histograms for each step of cleaning or filtering the dataset from its original number of samples 

is shown in Figure 2. 

Next, I created a feature matrix that only had aerosol measurements in order to predict the 

in-cloud indicator data. I decided to use a supervised model because I had labeled data as seen in 

the probability density function (PDF) for each cloud type binned against T (Figure 3). I 

attempted to use linear SVC, because I was predicting a category and had less than 100K 

samples, but it did not converge despite increasing the number of maximum iterations to 10K 

every 10i starting from i = 1. This demonstrated to me that the variables were too colinear for this 

type of model, so I opted to use a Support Vector Classification (SVC) with the Gaussian Radial 

basis function (RBF) instead, which did converge.  

Now that the relationship between aerosols and clouds was established, I sought to go 

one step further and use a model that would use data identified as cirrus cloud by the cloud 

indicator to establish whether it was formed homogenously or heterogeneously. For this I did not 

have labeled data, so I needed to turn to a clustering algorithm, an unsupervised method, to find 

patterns across my feature matrix. Cirrus cloud formation ice nucleation mechanisms are highly 

dependent on the T, relative humidity, w, aerosol number concentration and aerosol surface area 



concentration. For homogeneous ice nucleation to take place for cirrus clouds, the T needs to be 

colder than about 235K and the relative humidity with respect to ice greater than approximately 

140%. This is a high energy threshold to be crossed, but as previously mentioned, in the presence 

of an INP this threshold can be lowered as heterogenous ice nucleation can take place at warmer 

temperatures and a lower relative humidity with respect to ice. This can be observed in the PDF 

for cirrus clouds in Figure 3 which is not limited to temperatures colder than 235K. The w is also 

an important feature as it can uplift water vapor or even ice crystals to colder regions in the upper 

atmosphere. Specifically, I know that I only have 2 categories (homogeneous and heterogeneous) 

and that I have less than 10K samples. Thus, I decided to use the K-means model to predict these 

categories based on these nine features. Before I did the K-means I scaled, or standardized, the 

feature matrix in order to diminish the sensitivity for different scales across the various features 

during the clustering process. Then I rescaled the data along with the cluster centroids to plot 

each feature used in the K-means against T for reference (Figure 4). 

Finally, I wanted to predict the locations of these ice nucleation mechanisms, so I 

attempted to use the labels identified by the K-means clustering algorithm to train a multiple 

output regression model that predicts latitude and longitude. To identify which label represents 

which ice nucleation mechanism, I plotted Figure 5 which has two PDFs based on the labels 

from the K-means clustering against T. I decided that the PDF at warmer temperatures was most 

likely heterogeneous nucleation while the one at colder temperatures was homogeneous 

nucleation. Using this information, I set up two feature matrices and target variables for samples 

identified as homogeneous nucleation and heterogeneous nucleation, respectively. For the feature 

matrices, I kept the time, month, year, T, w, saturation vapor pressure with respect to water, 

saturation vapor pressure with respect to ice, fine dry aerosol number concentration, coarse dry 

aerosol number concentration, fine dry aerosol surface area concentration, coarse dry aerosol 

number concentration, total aerosol number concentration and the season. The season was 

encoded from a string into a number that corresponds to each season. Then I used a multiple 

output regression model with the Random Forest Regressor to predict the latitude and longitude 

of these two ice nucleation mechanisms. 

 

 



Results & Limitations 

 For my first model I used the SVC with a RBF kernel in order to predict cloud types 

based on a feature matrix with only aerosol measurements. I obtained an accuracy of 74% as 

seen in Table 1 which shows the classification report for this model. This report provides 

valuable insights into the model's performance across different classes. Precision represents the 

accuracy of positive predictions among the instances classified as positive while recall measures 

the ability of the model to identify all relevant instances of a particular class. The F1-score 

provides a balanced metric for model evaluation by combining the precision and recall. Looking 

at the specific class results, the model exhibits high precision of 79% for class 2.0, indicating a 

low rate of false positives. However, class 3.0 shows lower precision of 69%, suggesting a higher 

rate of misclassifying instances as positive. Class 4.0 demonstrates a trade-off between precision 

and recall, resulting in a relatively balanced F1-score 82%. The overall accuracy of 74% 

indicates the proportion of correctly classified instances across all classes. The macro-average 

and weighted-average metrics consider either equal weight for each class and account for class 

imbalances, respectively. Overall, the values for the classification report in Table 1 suggest a 

reasonably good model performance, especially considering the balanced F1-scores and the 

weighted average metrics, thus, demonstrating that aerosols can adequately predict the different 

types of clouds.  

 I evaluated the K-means clustering by calculated the silhouette score, which is a metric, 

ranging from -1 to 1, that shows the goodness of a clustering technique. A high value indicates 

that the object is well matched to its own cluster and poorly matched to neighboring clusters. I 

obtained a silhouette score of about 0.26. This suggests that the clustering is somewhat 

reasonable, but there is room for improvement by either using another clustering method or 

maybe updating the features. The Root Mean Squared Error (RMSE) values for the multiple 

output regression model were 45.28 and 84.79 for homogeneous and heterogeneous nucleation, 

respectively. The RMSE is a measure of the average magnitude of the residuals, representing the 

differences between the predicted and actual values. Lower RMSE values are desirable, as they 

signify smaller prediction errors and, consequently, higher precision in the model's output. 

Unfortunately, the RMSE values for this model are high indicating that there are areas for 

improvement. It is interesting to note that the RMSE is lower for homogeneous nucleation, 



which actually has more samples (5344) compared to heterogeneous nucleation (3434). Thus, 

this could be an issue of simply not having enough samples.  

There are some limitations to this work. Firstly, cleaning and filtering the original dataset 

to just in-cloud and cirrus cloud data decreased the number of samples from 1490913 to 18980 

and 9154, respectively. As mentioned, I believe it would have been better to have some more 

samples, especially for the cirrus clouds, in order to train the model. I also believe that for the K-

means clustering I did that there was a bit too much collinearity as seen in Figure 4 between T 

and the supersaturation pressures. Additionally, I encountered some issues with the relative 

humidity with respect to ice measurements and was not able to use it in the feature matrix. This 

variable is preferable to saturation vapor pressure with respect to ice because of ease of 

interpretation, but unfortunately it decreased the number of samples for in-cloud data for summer 

to none. Finally, the aerosol measurements I used in this project are not from a full-size 

distribution which paints an inaccurate picture of aerosols in the atmosphere as mineral dust is a 

coarse aerosol (Kok et al., 2023). This is because the coarse size range upper limit is only 4.8 um 

and doesn’t capture larger sizes of dust which could be better at predicting heterogeneous 

nucleation. This is not ideal because surface area directly controls ice nucleation as larger INPs 

can have a higher occurrence of ice activation sites as there is simply more space on its surface. 

Future Work & Conclusion  

 If possible, I plan to refine and extend this work further in the future. I am interested in 

adding other sources and types of data to get more spatial and temporal coverage. I also would 

like to narrow down this work and only consider mineral dust as it is an efficient INP that can 

have implications for climate geoengineering (Cziczo et al., 2013; Lohmann and Gasparini, 

2017). As seen in Figure 1, the ATom campaign does not include many samples over Africa, 

Europe, and Asia, which are important source regions of aerosols. Some deserts in these regions 

even have deserts that are great at supplying mineral dust into the upper troposphere (Froyd et 

al., 2022). Unfortunately, there is a lack of mineral dust concentration measurements at cirrus 

cloud forming altitudes, but it is possible to use ice crystal number concentrations (ICNC) to 

estimate this value (Burrows et al. 2022). Field campaigns that have captured hydrometeor 

imaging from the 2D-S Stereo Probe (2DS), which is an optical imaging instrument that obtains 

stereo cloud particle images and concentrations using linear array shadowing, could provide a 



promising avenue to obtain this information. For example, a group used hydrometeor images 

captured by the 2DS instrument during the Southern Ocean Clouds, Radiation, Aerosol Transport 

Experimental Study (SOCRATES) campaign to discriminate between liquid and ice in the 

mixed-phase cloud regime by using a random forest algorithm (Atlas et al., 2021). I would be 

interested in using a similar method to discriminate between ice crystals that were formed 

heterogeneously with the assistance of an INP and those that were formed by homogeneous 

freezing. However, it is important to note though that this may cause some overestimation issues 

in the derived mineral dust concentration due to secondary ice production processes being 

difficult to account for.  

 There are a few machine learning techniques I would also like to try for this work. The 

silhouette score was low for the K-mean clustering, so I think it would be beneficial to further 

consider what features I am using for that particular model. Maybe it would be possible to do a 

principal component analysis in order to figure out what features are redundant and reduce the 

feature matrix dimensionality to improve on the clustering. I also would be interested in 

performing a hyperparameter tuning using Grid Search for the multiple output regression model. 

This would improve the model by narrowing down the parameters that can reduce the RMSE. 

Ultimately, this research could eventually inform cirrus cloud geoengineering by 

indicating what regions on Earth would be best suited for introducing mineral dust to cirrus 

clouds in order to produce a cooling effect. Given the current state of climate change it is 

necessary to conduct this research now especially given that geoengineering as a whole has been 

largely ignored in practice due to its uncertain consequences. But, it is still important that we 

properly assess whether this method could work along with the risks associated with it, so that 

humanity can make a well-informed decision as climate change continues to impact life on 

Earth. 

 

 

 

 

 



Table 1 | A classification report for the SVC with RBF analysis. 

 Precision Recall F1-score Support 
2.0 79% 79% 79% 1047 
3.0 69% 20% 31% 796 
4.0 73% 95% 82% 1820 

Accuracy   74% 3663 
Macro Average 74% 65% 64% 3663 

Weighted Average 74% 74% 70% 3663 
 

 

 

 

Figure 1 | The flight tracks for the ATom campaign for each season separated by original data, cleaned data, in-cloud 
data, and cirrus cloud data. 

 



 

 
Figure 2 | Histograms that show the number of samples for each season in the ATom campaign further separated 
into the original data, the cleaned data, in-cloud data, and cirrus cloud data. 

 
 



 
Figure 3 | Probability distribution functions for the three types of cloud in the ATom dataset 



 

Figure 4 | Scatter plots for the features used for the K-means clustering plotted against T. Red Xs signify the 
cluster’s centroid. 



 

Figure 5 | Probability distribution functions for the two ice nucleation formation mechanisms for cirrus clouds as 
identified using K-means clustering. 
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